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ABSTRACT — A novel technique for modeling the in an
nonlinear statistics of large- and small- signal device
model parameters is proposed. It features
transformation of individual random variables and
introduces a new criterion for optimum statistical
variable transformation based on Quantile-Quantile

plots. Subsequently, multivariant methods are applied

by the principal components [7]
intrinsically nonlineasstatistical model.

resulting

Il. NONLINEAR STATISTICAL DEVICE MODELING

to build an inherently nonlinear statistical model. The
models are easily implemented into current CAD tools
and are suited to accurately predict yield in the
presence of process variations and process shifts.
Results for devices and MMIC circuits operated under
small- and large signal excitation validate the accuracy

Step I: Mapping

We use standard in-process RF and DC measurements
from active and passive process control monitor structures
to extract the parameters for the standard small-signal
model [5] and for the empirical large-signal Materka-

of the method. Model [6]. In the large-signal case, measurements include

maximal Drain current (IMAX), saturation drain current
(IDSSP), pinch-off voltage (VP), peak transconductance
éGMP)’ and source/drain resistance (RS/RD). For the
extraction of model parameter, a two level optimizing
procedure has been developed that take the respective

to-market and yield. The key to optimizing both is the . .
ability to simulate process variatio ‘ori. at an earl measurement conditions of the process control monitor
y P asprior, Y structures into consideration. After thus mapping the

stage of a d95!9”- By pred|c_t|ng the circuit's sensitivity tOmeasured coupon data to the Materka-parameters, they
process variations the design can be

“centered” to the : .

. . ubsequently will be treated as the random variables.
manufacturing process or, in other words, made robus?.
This way, yield constraints and performance can be

balanced to reduce the number of design-cycles and to
maximize yield [1][2].

|. INTRODUCTION

The success of a MMIC product ultimately is measure
by its profitability. Critical factors in that respect are time-

Step II: Transformation

A simple yet powerful transformation function is used to
achieve a normal distribution for each transformed random

Deviations from the nominal behavior due to procesyariablex (with p being the respective parameter):
variations have been accounted for by either tuning N
F(x)=x

relevant parameters to their estimated limits (worst-case
scenario) or by performing a Monte-Carlo analysis with Also, a new criterion has been developed that assesses
the success of the transformation: the transformation

estimated parameter deviations ofmethod). Both
approaches lack any assessment of parameter correlati ction’s parameter are chosen to maximize the multiple
relation coefficient Rof the transformed data’s inverse

and can result in physically impossible model paramete&or
sets. The use of multivariant linear statistical methodg;, ssian probability function (Q-plotinormal plot) [7]
ith this transformation, we are able to use a linear

enables the modeling of correlation but assume the sal
distribution fuction for all random variables [3] [4]. For an regression model for the transformed data and to calculate
e parameters for the statistical model in a closed form.

accurate yield estimate the statictical model has to includﬁ‘;]
the nonlinear relationships between all random variablesl.hiS is a big advantage over a true nonlinear statistical
model, which requires an iterative technique. By using an

[9]
individual transformation function for each Materka-

va\:?/;blzrsotrz)ozselrr;?)lx:gutﬂia'{i:]a;cs(fa:?c?g(s)r:)folifnggfh ar?anmdgtr arameter the model is capable of accounting for nonlinear
P &nd non-Gaussian joint probabilities.

models and to avoid shortcomings associated with higher
order regression. A new criterion for an optimal

transformation function is proposed. Finally, the statistics
of the transformed variables can be accurately described
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Step IlI: Eigenvalue Decomposition The statistics of drain current vs. output power of two-

For the linear model of the transformed data westage power amplifier are illustrated as a scatterplot in fig.

determine the minimum number of independent dimensioft- The simulated data are in good agreement with the

Step IV: Principal Factor Model

The correlation matrix of the transformed random V. CONCLUSION
variables is orthogonalized via principal component

regression. o ) L ) :
The model building process is fully automated: theutlllzes opt|mum_ |n(_j|V|dl_JaI va_nable transformation bas_ed
on a novel criterion involving the Inverse Gaussian

software queries the database with coupon measuremera;s

o o robability function. The method makes use of readily

and performs the statistical model building process for ~. . . o
: : . . available data, features an inherently nonlinear statistical
small-signal device models, large-signal device models
: . model, and can accurately recreate means, standard
and passive components for different processes. The .. . . .
. . variations, and nonlinear correlations of the device
model parameter files are automatically updated and are

accessed by the CAD library components. Summary ba model's parameter. In conjunction with a Monte-Carlo
y Y P i Y PAYS ulator it accurately predicts circuit sensitivity to

for different processes can be accessed by the design L LT
o . rocess variation and circuit yield, and thus allows for
community via the intranet. . L
yield optimization.

A statistical modeling technique has been proposed that
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Fig. 1: Simulated Scatterplot of Materka-Parameters ldss Fig 4: Complementary Cumulative Distribution
vs. SL which accurately matches the data in itsFunction for a Monte-Carlo analysis (MC) without
statistical moments and the nonlinear correlation considering nonlinear correlation and for the proposed

statistical model (LSSM).
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Fig. 2: Input Match for a Low Noise Amplifier vs. Frequency; shown are the simulation with the standard small signal model
(based on one device), the mean behavior simulated with a centered/statistical model, and measured data
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Figure 3: Drain Current vs. Output Power at 11dBm Input Power for a 2 stage, 50% PAE, C-Band 0.25um T-gate PHEM
power amplifier MMIC with a total periphery of 9.4mm (half chip) predicting the measured data (not shown here).
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Fig.5: Materka-parameter Idss vs. PAE of a ideally
Es?rrnnsjllgﬁ)er? class F amplifier for a simple Monte Carlo Fig.6: Materka-parameter ldss vs. PAE of a ideally
: terminated class F amplifier for the proposed statistical
large signal model
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